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Abstract. We present calculations on all-trans-polyacetylene (t-PA), using localized orbitals
for the calculation of total correlation energies in anab initio framework. We show that due
to the localization properties of the localized Wannier functions, especially the virtual ones,
simultaneous interactions between three unit cells of a polymer must be included. However,
if a larger number of neighbours are taken into account our method is still faster than those
using canonical HF orbitals. Our LO approximation is shown to be able to recover about 90%
of the correlation energy obtained in the canonical orbital basis in the equilibrium geometry.
Furthermore, we present a different approximation which also reproduces potential curves very
well, although this variant recovers only about 80% of the total correlation energy per unit
cell calculated with a canonical orbital basis. This failure, however, leads only to a shift of the
potential parallel to the canonical one, even in a very subtle case like that of the bond-alternation
potential in t-PA which depends strongly on the quality of the correlation calculation method
used. For the equilibrium bond alternationu0 (projected onto the polymer axis) of t-PA the
coupled-cluster doubles method with localized orbitals yields values almost identical to those
obtained with canonical Møller–Plesset perturbation theory of fourth order including single,
double, triple and quadruple excitations, published previously in the literature (Suhai S 1995
Phys. Rev.B 51 16 553). Furthermore, our results onu0 agree fairly well with experiment,
while the results of density functional calculations, also given in the above-mentioned work,
are usually too small. Only one of the functionals applied yields comparable values foru0—
surprisingly, the one which contains no correlation part.

1. Introduction

The coupled-cluster (CC) theory for the calculation of electron correlation effects in
molecules was formulated by̆Cı́z̆ek [1] and C̆ı́z̆ek and Paldus [2]. Since then many
improvements and developments have been made, especially by the groups ofC̆ı́z̆ek and
Paldus and that of Bartlett (see [3a] for a comprehensive overview). Reviews of the relevant
literature can be found in [3a, 3b]. The CC theory has two main advantages for applications
to large systems like polymers. First of all it is invariant to separate localization of the
occupied and virtual orbital spaces by unitary transformations [1] and secondly it is size
extensive, i.e. the results have the proper dependence on the number of electrons. Another
method for the calculation of correlation effects used in this work is many-body perturbation
theory in Møller–Plesset (MP) partitioning [4], which is size consistent in any order. Note
that the linear approximation—LCCD theory—to CCD theory (D indicates the use of double
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excitations only) corresponds to the D-MP series (using double excitations only) summed
up to infinite order and to the CEPA-0 (the coupled-electron-pair approximation of lowest
order).

For larger molecules and also for polymers the use of localized orbitals was suggested.
Laidig, Purvis and Bartlett [5–7] used non-SCF localized orbitals, which cannot be derived
from the Hartree–Fock reference function by a unitary transformation. Kirtman and Dykstra
[8] introduced a local space approximation to study the interaction between molecular
fragments, and Meyer and Frommhold [9] applied non-orthogonal localized orbitals to
overcome basis-set superposition errors in their calculations. Neuheuser, von Arnim
and Peyerimhoff [10] applied localized orbitals in CI calculations on organic molecules.
Furthermore, in calculations of the circular dichroism and of VUV spectra oftrans-2,3-
dimethyloxirane, Carnell, Grimme and Peyerimhoff [11] found that a localized orbital
description leads to the best agreement with experimental spectra. An orbital invariant
form of MP theory (LMP theory) was derived and applied to several molecules by Pulay
and Saebø [12] and a simple derivation of LMP2 theory from the CCD equations was
given by one of us independently [13]. Most recently, Hampel and Werner [14] applied
coupled-cluster singles and doubles theory and different orders of MP perturbation theory
successfully in a treatment of molecules with localized orbitals, following the ideas of Pulay
and Saebø [12] for the construction of their localized occupied and virtual orbital spaces.
In our previous work, MP2, LCCD and CCD theories have been used for the calculation
of correlation energies (see for example [13, 15–19]). A comparative study on the use
of the Boys [20] and Edmiston–Ruedenberg [21] localized orbitals in molecules has been
performed for the nucleotide bases [22]. Computation of the correlation energy only in
subspaces of localized orbitals gave≈90% of the correlation energy of the unpartitioned
molecule obtained using the complete set of orbitals [13, 15, 16].

For the calculation of correlation effects in polymers, four different methods are mainly
used. Stollhoff, Fuldeet al [23–28] compute different parts of the correlation energy in a
localized basis using different methods, especially appropriate for these parts (intra-atomic,
interatomic and so forth). This seems to be a very efficient and successful method for the
calculation of the total correlation energy per cell; however, it provides no possibility of
correcting other important quantities like the band gap. Suhai and Ladik [29] used the CMP2
method for correlation calculations for polymers. A more recent review on this type of work
was given by Ladik [30]. For the correction of the band gap, Toyozawa’s electronic polaron
(quasi-particle (QP) energy bands) model [31] was applied in a CMP2 framework first for
trans-polyacetylene [32, 33]. Other applications, e.g. to polypeptides and a nucleotide base
stack, followed [34–36]. In all of these calculations localized Wannier functions could be
used only in an intermediate step since CMP2 theory neglects off-diagonal Fock matrix
elements. Thus the two-electron integrals had been transformed from the atomic to the
Wannier basis and subsequently to the canonical crystal orbital (CO) basis. Therefore the
localization of the orbitals cannot be exploited fully. In an extension of this work, Liegener
and Ladik [37] introduced Green’s function techniques into the theory. In addition Liegener
[38] was able to apply also CMP3 theory to polymers. Finally, Suhai used the CMP4
method for polymers [39]. Recently, Fink and Staemmler [40] used Wannier functions for
the calculation of the correlation energy in infinite chains and layers of He atoms. They
calculated the Wannier functions directly from the HF crystal orbitals without any further
localization (see below) which is possible for systems without strong covalent bonds between
the unit cells, as one can see also from our previous calculations [41] on H2 chains. They
compute a full cluster of−N to N cells, whereN is the number of neighbours considered,
and they have applied all possible symmetries. For the central regions of their cluster
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they use more sophisticated correlation methods than for the outer ones. However, in our
opinion this procedure could lead to difficulties with the exponentially increasing amount of
computational time for larger systems, as well as with the localizability of Wannier functions
in the case of covalently bound unit cells, as discussed below.

In a previous paper we have shown how to take advantage of localized orbitals in CCD
and LMP2 calculations on polymers [3b]. We refer the reader to this paper for the details
of the formalism for the calculation of the correlation energy per unit cell using localized
orbitals.

Results of an application of this method to different polymers have been presented
by Ye, F̈orner and Ladik [41]. From these it can be seen that one can obtain roughly
80–90% of the correlation energy per unit cell in the localized orbital approximation for
non-bonded systems, but only 60–70% for polymers with chemically bound unit cells. In
another previous paper [42] we were able to show that this is partly caused by the Wannier
functions being not very well localized in these cases. As the localization properties of
the Wannier functions depend on the phases of the Hartree–Fock crystal orbitals [43, 44]
(besides the necessity of a correct band ordering [45]), we suggested a method for the
optimization of these phases to achieve an improved localization of the Wannier functions.
Furthermore, we have shown numerically [42] that the method for taking advantage of
the localized orbital description which proved to be successful for molecules [13, 15–17]
does not work well for polymers, yielding only about 60% of the total correlation energy
per unit cell for polyacetylene with a double-zeta basis set. Note that in none of our
applications of localized orbitals (LOs) do we mix orbitals belonging to the occupied space
with those belonging to the virtual space during the construction of LOs, since that would
be a procedure which would make the inclusion of single excitations necessary.

In this work we suggest applying another partitioning of the complete orbital space
into subspaces for calculations of the total correlation energy for polymers, and compare
the numerical results obtained using different schemes, again using polyacetylene with
minimal and double-zeta basis sets as an example. In the MP2 case we can compare the
results obtained with the localized orbital approximation with those calculated by the CMP2
packages. Therefore we report in that case also the dependence of the results on the number
of neighbours taken into account, while coupled-cluster calculations were performed only
in the fourth-neighbour approximation. Furthermore, some points of the potential curve
with respect to the bond alternation of the system were computed again in the fourth-
neighbour approximation. Since we have found that for our comparative calculations a
minimal basis set is not sufficient for obtaining the correct trends, we use in addition a
double-zeta one. This is due to the fact that COs obtained in a minimal basis set are far
more readily localizable than those calculated in a double-zeta basis. Thus in minimal-
basis-set calculations our localized orbital approximation performs much better than it does
in computations using extended basis sets. Therefore minimal-basis-set calculations would
yield a misleading qualitative picture of the performance of our approximation.

2. Method

Since the localized orbital approximation and its use in the calculation of the total correlation
energy per unit cell were described in detail before [3b, 41], we want to present here only
the most important formulae. The restricted Hartree–Fock crystal orbitals of a polymer
are given using a linear combination of atomic orbitals (LCAO)ansatz[46, 47] (earlier
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approaches were based on simple tight-binding models [48]) by

φkj (r) = G−1/2eiλj (k)
M∑

q=−M
eikq

m∑
s=1

csj (k)χ
q
s (r). (1)

In this equation,j is the band index,k/a ∈ [−π/a, π/a] (in the infinite-size limit
M → ∞) is the quasi-momentum (wherea is the translation length which is the distance
from the reference cell to the first neighbour),G = 2M + 1 is the number of cells in the
chain, q denotes the cell index, counted from the reference cellq = 0, m is the number
of basis functions in a cell, theχqs (r)s are the basis functions in cellq, and csj (k) is
the coefficient ofχqs (r) in bandj for wave numberk. λj (k) is the so-called free phase.
The COs are delocalized over the whole polymer. Note that hereM and consequentlyG
approach infinity for a polymer. The COs can be transformed to Wannier functions [49–52]
w
q

j (r) which are localized around cellq (M again tends to infinity):

w
q

j (r) =
M∑

q ′=−M

m∑
s=1

d
q ′
sj χ

q+q ′
s (r). (2)

The LCAO coefficients are given by (BZ stands for Brillouin zone)

d
q ′
sj = G−1

(BZ)∑
k

eiλj (k)eikq ′csj (k)
M→∞→ 1

2π

∫ π

−π
eiλj (k)eikq ′csj (k) dk. (3)

The free phasesλj (k) can be used to keep the LCAO coefficients real (λj (−k) = −λj (k)).
Since this fixes the phases only in one half of the BZ, one can optimizeλj (k) further to
improve the localization of the Wannier functions.

We want to point out that for the application of the localized orbital approximation, well
localized Wannier functions (i.e. Wannier functions with very small or vanishing coefficients
in outer cells) are essential. To achieve this goal, the integrals

Wj = 〈w0
j |Ô|w0

j 〉� (4)

for the Wannier functionsj centred at cell 0 are maximized for each bandj separately.
The subscript� denotes that the integration is performed only over the reference cell
(hereq = 0), while Ô stands for any one-electron operator. A detailed description of the
localization method as well as the results of some comparative calculations using different
operatorsÔ (the unit operator turned out to yield the best localization for almost all bands)
are given in [42]. We used the procedure described there here also.

In the many-body perturbation methods used (CMP2, LMP2), the correlated wave
function is given in intermediate normalization (if only double excitations are considered)
by

|ψ〉 = |φ0〉 +
∑
IJ

∑
RS

CRSIJ |φRSIJ 〉. (5)

|φ0〉 is the ground-state Slater determinant and|φRSIJ 〉 the corresponding determinant, where
the occupied orbitalsI, J are substituted for with the virtual orbitalsR, S. CRSIJ is the
corresponding coefficient, andI, J, R, S are combined indices:I = (i, ki).

In the coupled-cluster theory, the wave function is written as

|ψ〉 = exp(T̂ )|φ0〉. (6)
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The excitation operator̂T is given by a sum overn j -fold excitation operatorŝTj (n is the
number of electrons in the system):

T̂ =
n∑
j=1

T̂j =
n∑
j=1

( ∑
Kj ,...,K1

∑
Rj ,...,R1

T
Rj ,...,R1

Kj ,...,K1

j∏
i=1

â+Ri âKi

)
(7)

where â+A (âA) is a creation (annihilation) operator referring to occupied (A = Kj ) and
virtual (A = Rj ) Hartree–Fock orbitals, respectively.

In the CCD method the excitation operator is approximated byT̂ ≈ T̂2, and thus

|ψ〉 =
∞∑
ν=0

1

ν!
T̂ ν2 |φ0〉. (8)

Introduction of the correlated wave function into the Schrödinger equation and projection
onto the Hartree–Fock ground state leads after further evaluation [1] to the correlation
energy, which can be calculated for one unit cell in a localized basis of Wannier functions
using the following formula:

Ec

G
=
∑
i

∑
J

∑
ST

V ST(i,0)J (Wf )1ST
(i,0)J (Wf ) (9)

with
1AB
IJ (Wf ) = 2T ABIJ (Wf )− T ABJI (Wf )

V ABIJ (Wf ) = 〈wI (1)wJ (2)| 1

r12
|wA(1)wB(2)〉

T ABIJ (Wf ) = 〈wI (1)wJ (2)|T̂2|wA(1)wB(2)〉.

(10)

Here I, J,A,B are again combined indices of the formJ = (j, q), where herej is a
localized orbital index andq a cell index. i and j refer to occupied Wannier functions,s
andt to virtual Wannier functions.(i,0) denotes the Wannier functioni in the reference cell.
The necessary transformations of the Fock matrix of Wannier function basis are described in
detail in the appendix. Also the necessary approximations involved are given there. Further
details concerning the evaluation of the coupled-cluster equations can be found elsewhere
(see [1, 2] for molecular orbitals, [3b] for Wannier functions for polymers).

In order to save on calculation time, which increases roughly withn6 using the CCD
method (n being the total number of basis functions, i.e. the number of basis functions times
the number of cells taken into account), a partitioning of the Wannier function space into
smaller subunits was suggested [3b]. Our previous calculations have shown that for systems
without strong interactions between the cells (e.g. hydrogen chains, and water stacks) two-
cell subunits and the direct use of the SCF-HF wave function (transformed to Wannier
functions) were already sufficient for obtaining more than 90% of the correlation energy
obtained with the canonical MP2 method [41]. For systems with covalently bound unit cells,
such astrans-polyacetylene, however, this approximation had to be improved by a further
localization of the Wannier functions. In this way, the correlation energy using localized
orbitals was improved, but the LMP2/CMP2 ratio of 0.6 (double-zeta calculation, fourth-
neighbour interactions) indicates that not all problems can be solved solely by localization
of the Wannier functions [42]. While e.g. the core bands are completely localized in the
reference cell and the localization of other bands could be improved drastically [42, 52],
some bands especially in extended basis sets remained rather delocalized. That means that
if one neglects higher-order terms (i.e. terms with contributions from more than two cells)
larger proportions of the correlation energy cannot be recovered. An improvedansatz,
taking into account some of the three-cell interactions also, is presented in this paper.
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Figure 1. Plots of the squares of the Wannier coefficients for (a) the occupied band No 5 and
(b) the virtual band No 12 (numbering according to increasing energy, with No 1 being the
lowest core band) centred in the reference cellN = 0, (d0

i,5)
2 and (d0

i,12)
2, respectively. They

are normalized such that the square of the maximal coefficient of the corresponding Wannier
function is equal to 1. The calculation was performed for polyacetylene in the fourth-neighbour-
interaction approximation using Clementi’s double-zeta basis set (coefficientsi = 1–24 belong
to cell −4, i = 25–48 to cell−3, i = 49–72 to cell−2, i = 73–96 to cell−1, i = 97–120 to
the reference cell,i = 121–144 to cell+1, i = 145–168 to cell+2, i = 169–192 to cell+3,
and i = 193–216 to cell+4).

3. Results and discussion

Before we turn to the bond-alternation problem for polyacetylene, we want to give
the expressions for our different approximations for the computation of the correlation
energy and discuss the results of comparative calculations on all-trans-polyacetylene in its
equilibrium geometry. Comparative calculations have been performed for two different
basis sets with interactions of different numbers of neighbours taken into account. As
mentioned before we want to present here the results for different partitionings of the orbital
space, introducing different levels of approximation. In all cases the resulting energies with
our localized orbital approximation (LOA) are compared with the results of direct CMP2
calculations, computed by using the programs of Otto [53] and of Bogar and Ladik [54],
the latter one based on a CMP2 program of Liegener [55] and improved by Palmer and
Ladik [56]. The expressions used for the calculation of the total correlation energy per
unit cell of a polymer in our localized orbital approximation were partly given in an earlier
paper [41]. However, we will repeat them here for the sake of completeness. Note that
with our program we have reproduced the LMP2, CCD and LCCD values calculated with
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Figure 1. (Continued)

a completely independent program [57] which uses the Pariser–Parr–Pople (PPP) model for
poly-paraphenylene and the same type of subunits as our program. For this purpose we
simply used the PPP integrals and COs from this calculation as input for our programs,
since the post-HF calculations inab initio and PPP frameworks have in principle the same
mathematical form.

To compare with a CMP2 result in theN th-neighbour-interaction approximation we
have to calculate the correlation energy of a cluster of 2M + 1 unit cells, whereM →∞
for a polymer, which can be partitioned as

E2M+1 = (2M + 1)E0+
N∑
L=1

(2M + 1− L)1E0L + HOT (11)

whereE0 is the intracell correlation energy,N is the number of intercell interactions actually
computed, and HOT stands for higher-order terms, e.g. non-pairwise-additive intercell
interactions and chain end effects. To obtain the total energy per unit cell in our previous
approximation [42] we have dividedE2M+1 by the number of cells (2M + 1) and have
neglected HOT. As the factor of 2M + 1− L in the sum cancels with(2M + 1)−1 for
M → ∞ we have as the correlation energy per unit cell in theN th-neighbour-interaction
approximation (note that in [41] the limitM →∞ was not introduced)

EN = E0+
N∑
L=1

1E0L. (12)

The energyE0 is obtained by a calculation on the unit cell using only the Wannier functions
belonging to it. It should be mentioned here that for the integral transformations in all cases
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the expansions of the Wannier functions through all cells (from−N to N ) taken into
account in theN th-neighbour-interaction approximation were used in the program [54].
The interaction energies1E0L were extracted from calculations taking into account the
Wannier function space belonging to two or more cells. The resulting correlation energy
will always be compared with the CMP2 correlation energy in theN th-neighbour-interaction
approximation, as calculated with the program of Bogar and Ladik [54]. Note that truncated
Wannier functions were used in the CMP2 program [54] in an intermediate step in the
integral transformation, and thus the CMP2 method also depends on the localization of the
Wannier functions.

In our previous calculations only the cell dimers 01, 02,. . . , 0N have been used to
obtain1E0L(0), as

1E0L(0) = E0L − 2E0. (13)

The results, however, especially for the extended basis set, make further efforts necessary
[42]. As a further localization of the Wannier functions seems not to be possible (since the
localization was optimized by a variational procedure), some of the higher-order terms have
to be included in the calculation. To demonstrate this, we show in figure 1 the squared
coefficients (normalized such that the largest one has a value of 1) of some localized
Wannier functions (Wfs) of polyacetylene in the extended basis set and fourth-neighbour
approximation (equilibrium geometry; see [42] for details and for the detailed description
of the basis set). We show in particular those occupied and virtual Wfs which show the
worst localization properties. Figure 1 indicates clearly that the extension of the Wannier
functions makes inclusion of higher-order terms in the correlation calculation necessary,
since there are rather large coefficients outside the reference cell, especially in the case of
the virtual HF bands. However, for the occupied bands also the region of large coefficients
extends over at least three cells. For the Wfs shown in figure 1, only 87.7% (the occupied
band; figure 1(a)) and 61.1% (the virtual band; figure 1(b)), respectively, of their total norm
originates from the three cells−1, 0 and 1.

Note that both of these bands are not ofπ - or π∗-type, but are ofσ - andσ ∗-type. For
the highest occupied and the lowest virtual bands ofπ - andπ∗-type, 99% of their total norm
originates from the cells−1, 0 and 1. In the case of the Wfs for occupied bands (besides
No 5), all of the norm contributions from these three cells are much larger than 90% of their
total norm, while the Wfs of several virtual bands are not very well localizable. We assume
that the reason for this behaviour ofσ - andσ ∗-bands is that in these cases adjacent bonds
have common atoms which makes localization more difficult and our additional localization
procedure changes the shape of such LOs to a large extent. Since the physics depends
neither on the shape of localized one-electron orbitals nor on the phases of the canonical
COs, such a behaviour is not surprising.

Unfortunately the necessary computational time increases rapidly with increasing
number of basis functions (roughly proportionally ton6 as mentioned before), i.e. by a
factor of roughly 10 when going from two-cell to three-cell interactions. In addition,
the number of possible clusters of cells is increased in the third-order case, even if the
translational symmetry is taken into account (e.g. for a fourth-neighbour calculation, instead
of calculating only terms 0, 01, 02, 03 and 04, now in addition terms 012, 013, 014, 023,
024, 034 would have to be calculated, if HOT with contributions from more than three cells
are neglected). To be able to apply equation (12) further for modelling the total correlation
energy of a polymer, now symmetric simultaneous interactions from three cells are also
included to calculate new1E0L(x)s, with x standing for different levels of approximation,
as described below.
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Table 1. Symmetric simultaneous three-cell contributions (in eV) to the correlation energy as
used in our approximation (1) (see the text) for alternating all-trans-polyacetylene with two
different basis sets using Suhai’s optimized geometry and 11k-points (note that for the minimal
basis set we show only the LMP2 and LCCD values for illustration, while the values of1E3

2
in the double-zeta basis are nearly the same for all three methods within 0.01 eV).

(a) Clementi’s minimal basis

Method N = 2 N = 3 N = 4 N = 5

1E3
1 LMP2 −0.489 −0.353 −0.345 −0.341

LCCD −0.565 −0.434 −0.418 −0.415

1E3
2 LMP2 — — −0.023 −0.020

LCCD — — −0.030 −0.027

(b) Clementi’s double-zeta basis

Method N = 2 N = 3 N = 4

1E3
1 LMP2 −3.791 −0.884 −0.628

LCCD — — −0.647
CCD — — −0.642

1E3
2 LMP2 — — −0.196

LCCD — — −0.205
CCD — — −0.204

The total correlation energy for a symmetric (with respect to the reference cell) cell
trimer (−L0L), treated as a molecule in the LCCD and CCD approximations, is given by

EaL =
∑
i,j,r,s

L∑
q,q ′,q ′′,q ′′′=−L

′
V
(rq ′′)(sq ′′′)
(iq)(jq ′) (2T (rq

′′)(sq ′′′)
(iq)(jq ′) − T (rq

′′)(sq ′′′)
(jq ′)(iq) ) (14)

(the expression for LMP2 theory has the same structure, onlyT has to be replaced byC).
Here the primed summations over theqs denote restricted ones of the form

L∑
q=−L

′
fq = f−L + f0+ fL (15)

where thefqs are arbitrary terms depending on a cell indexq. The total energy of a cell
trimer (−L0L) can be written as

EaL = 3E0+ 21E0L(0)+1E0,2L(0)+1E3
L (16)

where the last term stands for simultaneous three-cell interactions between cells−L, 0
andL. Note that the last two terms are non-vanishing only if the number of neighbour
interactions considered in the HF-CO calculation,N , is larger or equal than 2L. This
means that forL > N/2 the energyEaL can be constructed from 3E0 + 21E0L (simply
by adding an additional cell with one additional interaction to the cell dimer). Thus for
calculations withN = 2, 3 we only have to evaluate1E3

1, while for N = 4, 5, 1E3
2 was

also calculated. Some examples of the magnitudes of such corrections (for computational
details such as the geometry and basis set see again [42]) are given in table 1.
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To improve our zeroth-order approximation by inclusion of the1E3
Ls, we have to change

equation (12) to

E2M+1 = (2M + 1)E0+
N∑
L=1

[
(2M + 1− L)1E0L + (2M + 1− 2L)1E3

L

]+ HOT ′. (17)

Here HOT′ stands for the remaining higher-order terms without these simultaneous three-
cell interactions. In the limitM → ∞ again the factors 2M + 1− L and 2M + 1− 2L
cancel with(2M + 1)−1. Thus we can add the additional three-cell interaction to1E0L(0)
in order to obtain our first approximation1E0L(1):

1E0L(1) = 1E0L(0)+1E3
L. (18)

Note that with this definition the total correlation energy per unit cell of a polymer can
be calculated simply with equation (12), while for the calculation of the total energy of
finite-cell oligomers one has to use equation (17). With this approximation the majority of
the total CMP2 energy per unit cell should be recovered by the LMP2 theory in second-
neighbour-interaction calculations, because no explicit higher-order contributions besides the
additional1E3

L contributions are taken into account in both CMP2 and LMP2 calculations.
In this calculation scheme the LMP2 correlation energy was improved for the minimal

basis by 10–15% of the CMP2 energy, depending on the number of neighbours taken into
account. Even for a fifth-neighbour calculation, the percentage obtained was increased
from 78 to 90%, which could lead to the impression that the approximation might be
reasonable. Unfortunately, using an extended basis set, the same problems appear as in
the1E0L(0) approximation. While more than 98% of the CMP2 energy is recovered in
the second-neighbour approximation, the LMP2/CMP2 ratio drops to 0.7 for third- and
fourth-neighbour-interaction calculations. Although this is again an improvement of≈10%
compared to the zeroth approximation, it indicates strongly that some Wannier functions are
still rather delocalized, making the inclusion of additional higher-order terms or a further
improved ansatznecessary. Note furthermore that for interactions of larger numbers of
neighbours, the number of higher-order contributions, which we neglect, also increases.
In addition this shows that the minimal-basis-set results have to be treated with extreme
caution in the polymer case, leading even to qualitatively wrong conclusions.

A better approximation, partly suppressing end effects, would be to sum the matrix
elements obtained in the calculation of the (−L0L) trimer in a symmetric way (with respect
to the reference cell):

EsL =
∑
i,j,r,s

L∑
q,q ′,q ′′=−L

′
V
(r,q ′)(s,q ′′)
(i,0)(j,q) (2T (r,q

′)(s,q ′′)
(i,0)(j,q) − T (r,q

′)(s,q ′′)
(j,q)(i,0) ). (19)

Here the1E0,2L terms are no longer explicitly included; however, they affect the other
terms implicitly. Now in anN th-neighbour-interaction calculation we can put the trimer
into a finite cluster of 2N + 1 cells. In such a cluster of cells, we have 2N + 1− L times
the interaction between cells 0 andL and 2N +1 times the unit-cell contributionE0. Since
the total energy of that cluster is(2N + 1)EsL, we obtain our desired second approximation
from

(2N + 1)EsL = (2N + 1)E0+ (2N + 1− L)1E0L(2) (20)

which finally yields our 0L interaction term as

1E0L(2) = 2N + 1

2N + 1− L(E
s
L − E0). (21)
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Note that the simultaneous three-cell interactions are included implicitly in1E0L(2). With
this definition of interactions, the calculations with the minimal basis set for the somewhat
pathological case ofN = 2 give more than 100%; however, even for the double-zeta basis
we obtain roughly 80% with this procedure in a fourth-neighbour-interaction calculation.

Finally a further improvedansatzwould be to compute the trimer energyE3
L = 3EsL

directly. In this way, using the advantage of the symmetric summation showing smaller
end effects, interactions to further cells could also possibly be implicitly included. In this
approximation

1E0L(3) = 1

2
(E3

L − 3E0). (22)

Now we want to discuss the results of calculations showing the dependence of the
different levels of approximations described above on the numbers of neighbours for which
the interactions are explicitly taken into account. The calculations were performed on t-
PA, using Suhai’s geometry and 11k-points, which seems to be sufficient for our purpose.
Calculations including interactions of two to five neighbours made using Clementi’s minimal
basis set [58] are compared at the LMP2 and LCCD level. We omit here the CCD values,
since, as already discussed, minimal-basis-set results have anyway only illustrative value,
and the CCD results are just somewhat smaller in absolute value than the LCCD ones
(furthermore, the CCD method converges extremely slowly in the case of the (−L0L) cell
clusters). For the double-zeta basis [59] we discuss mainly LMP2 results for second- to
fourth-neighbour interactions, and restrict the discussion of LCCD and CCD results to the
largest case treated (fourth-neighbour interactions), because, as discussed at length in our
previous paper [42], second- and third-neighbour-interaction calculations are not sufficient
to describe t-PA. The numerical artefacts of these computations even lead to divergencies
in some of the iterations [42].

The results of the calculations using the minimal basis set are given in table 2(a) for the
different approximations. To avoid the tables becoming too lengthy, we will not explicitly
present the dimer and trimer total energies, but only their contributions to the resulting total
correlation energies per unit cell.

As expected, using1E0L(1) in the strict second-neighbour approximation on the
LMP2 level leads to nearly exactly 100% of the CMP2 result, while on including more
neighbours the approximation converges to values above 90%. Approximations (2) and (3)
are overshooting forN = 2, and the latter also for larger numbers of neighbours. The
LCCD and CCD results (the latter ones are not shown) are as usual much higher than
the MP2 ones, and we expect that they are in the same relationship to the corresponding
(unknown) canonical ones as the MP2 numbers are. Note that the CMP2 values also vary
with the degree of localization of the Wannier functions. This is due to the fact that the
Wannier functions are normalized only if the complete (infinite) set of coefficients is taken
into account. Since we can use only a subset of the coefficients in the CMP2 calculations,
the functions have to be renormalized (see [53–55]; see also the appendix). With increasing
degree of localization an increasing part of a Wannier function is described by this subset
of coefficients, and therefore the CMP2 values change.

Introducing a larger basis set (Clementi’s double-zeta basis), we obtain different results
(table 2(b)). Unlike for the minimal basis set, where the relative improvement was based on
the increase of the LMP2 energies and on the decrease of the CMP2 energies, we observe in
theN = 3 and 4 cases an increase of the total CMP2 correlation energy also using the better-
localized Wannier functions. Thus we end up with roughly 70% of the CMP2 result in our
approximation (1), while for our last approximation≈87% of the CMP2 energy is reached.
In this case the value forN = 2 overshoots the canonical correlation energy, but as the
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Table 2. The contributions to the total energy per unit cell for the different approximations (0)–
(3) as described in the text for alternating all-trans-polyacetylene obtained using two different
basis sets, Suhai’s optimized geometry,N th-neighbour-interaction calculations for different
values ofN , and 11k-points (all of the energies are in eV).

(a) Clementi’s minimal basis

CMP2 Method E0 1E01 1E02 1E03 1E04 1E05 EN % CMP2

Approximation (0)

N = 2 −2.931 LMP2 −0.979 −1.099 −0.360 — — — −2.438 83.2
LCCD −1.324 −1.316 −0.416 — — — −3.056 104.3

N = 3 −2.882 LMP2 −0.951 −1.001 −0.255 −0.092 — — −2.299 79.8
LCCD −1.293 −1.197 −0.306 −0.099 — — −2.895 100.5

N = 4 −2.888 LMP2 −0.938 −0.989 −0.247 −0.050 −0.046 — −2.270 78.6
LCCD −1.269 −1.178 −0.301 −0.059 −0.053 — −2.860 99.0

N = 5 −2.887 LMP2 −0.936 −0.980 −0.243 −0.041 −0.033 −0.020 −2.253 78.0
LCCD −1.267 −1.165 −0.295 −0.047 −0.038 −0.022 −2.834 98.2

Approximation (1)

N = 2 −2.931 LMP2 −0.979 −1.588 −0.360 — — — −2.927 99.9
LCCD −1.324 −1.881 −0.416 — — — −3.621 123.5

N = 3 −2.882 LMP2 −0.951 −1.354 −0.255 −0.092 — — −2.652 92.0
LCCD −1.293 −1.631 −0.306 −0.099 — — −3.329 115.5

N = 4 −2.888 LMP2 −0.938 −1.334 −0.270 −0.050 −0.046 — −2.638 91.3
LCCD −1.269 −1.596 −0.331 −0.059 −0.053 — −3.308 114.5

N = 5 −2.887 LMP2 −0.936 −1.321 −0.263 −0.041 −0.033 −0.020 −2.614 90.5
LCCD −1.267 −1.580 −0.322 −0.047 −0.038 −0.022 −3.276 113.2

Approximation (2)

N = 2 −2.931 LMP2 −0.979 −1.611 −0.600 — — — −3.190 108.8
LCCD −1.324 −1.924 −0.693 — — — −3.941 134.5

N = 3 −2.882 LMP2 −0.951 −1.317 −0.357 −0.161 — — −2.786 96.7
LCCD −1.293 −1.580 −0.428 −0.173 — — −3.474 120.5

N = 4 −2.888 LMP2 −0.938 −1.256 −0.329 −0.075 −0.083 — −2.681 92.8
LCCD −1.269 −1.500 −0.352 −0.089 −0.095 — −3.305 114.4

N = 5 −2.887 LMP2 −0.936 −1.217 −0.307 −0.056 −0.052 −0.037 −2.605 90.2
LCCD −1.267 −1.450 −0.373 −0.065 −0.060 −0.040 −3.255 112.7

CMP2 value of about−10.2 eV seems not to be reasonable, these calculations are only given
for the sake of completeness. To obtain more correct correlation energies, a larger number
of neighbours must be taken into account. In table 2 we restrict ourselves (as discussed
above) to LMP2 energies for interactions of 2–4 neighbours and present the LCCD and
CCD results only for fourth-neighbour interactions. As one would expect, the CCD results
are again larger than the corresponding LMP2 ones. Note that in table 2 the values for1E3

2
included in1E02 have been computed from the corresponding LMP2 results with the help
of scale factors, as some convergency problems arose during the (−202) trimer calculations
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Table 2. (Continued)

(a) Clementi’s minimal basis, continued

CMP2 Method E0 1E01 1E02 1E03 1E04 1E05 EN % CMP2

Approximation (3)

N = 2 −2.931 LMP2 −0.979 −1.934 −0.540 — — — −3.453 117.8
LCCD −1.324 −2.309 −0.624 — — — −4.257 145.2

N = 3 −2.882 LMP2 −0.951 −1.694 −0.383 −0.138 — — −3.166 109.9
LCCD −1.293 −2.031 −0.459 −0.149 — — −3.932 136.4

N = 4 −2.888 LMP2 −0.938 −1.674 −0.384 −0.075 −0.069 — −3.140 108.7
LCCD −1.269 −2.000 −0.470 −0.089 −0.080 — −3.908 135.3

N = 5 −2.887 LMP2 −0.936 −1.659 −0.377 −0.062 −0.050 −0.030 −3.114 107.9
LCCD −1.267 −1.977 −0.458 −0.071 −0.057 −0.033 −3.863 133.8

(b) Clementi’s double-zeta basis

CMP2 Method E0 1E01 1E02 1E03 1E04 EN % CMP2

Approximation (0)

N = 2 −10.154 LMP2 −1.659 −3.070 −1.447 — — −6.176 60.8

N = 3 −7.755 LMP2 −1.552 −1.701 −0.735 −0.685 — −4.673 60.3

N = 4 −6.915 LMP2 −1.401 −1.480 −0.456 −0.409 −0.430 −4.176 60.4
LCCD −1.707 −1.627 −0.490 −0.721 −0.598 −5.143 74.0
CCD −1.678 −1.573 −0.485 −0.713 −0.593 −5.042 72.5

Approximation (1)

N = 2 −10.154 LMP2 −1.659 −7.041 −1.447 — — −10.147 99.9

N = 3 −7.755 LMP2 −1.552 −2.585 −0.735 −0.685 — −5.557 71.7

N = 4 −6.915 LMP2 −1.401 −2.108 −0.652 −0.409 −0.430 −5.000 72.3
LCCD −1.707 −2.274 −0.695 −0.721 −0.598 −5.995 86.7
CCD −1.678 −2.175 −0.689 −0.713 −0.593 −5.888 85.1

Approximation (2)

N = 2 −10.154 LMP2 −1.659 −6.135 −1.809 — — −9.603 94.6

N = 3 −7.755 LMP2 −1.552 −2.384 −1.029 −1.199 — −6.164 79.5

N = 4 −6.915 LMP2 −1.401 −1.943 −0.671 −0.614 −0.774 −5.403 78.1
LCCD −1.707 −2.109 −0.701 −1.082 −1.078 −6.677 96.6
CCD −1.678 −2.027 −0.698 −1.067 −1.067 −6.537 94.5

Approximation (3)

N = 2 −10.154 LMP2 −1.659 −7.362 −2.171 — — −11.192 110.2

N = 3 −7.755 LMP2 −1.552 −3.065 −1.103 −1.028 — −6.748 87.0

N = 4 −6.915 LMP2 −1.401 −2.591 −0.783 −0.614 −0.645 −6.034 87.3
LCCD −1.707 −2.813 −0.817 −1.082 −0.899 −7.318 105.8
CCD −1.678 −2.702 −0.814 −1.067 −0.890 −7.151 103.4
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with the LCCD and CCD methods (extremely slow convergence). Note further that in the
casesN = 2, 3 the CC trimer (and in many cases also the dimer) calculations diverge,
while for N = 1 even the HF-CO calculation (using the program [53]) does not converge.
This indicates again the fact that second- and third-neighbour-interaction calculations for
polyacetylene are far from sufficient for obtaining reliable results [33, 34, 42]. The main
reasons for the loss of correlation energy (especially in case of the double-zeta basis set)
in the localized orbital approximation can be found in the definition of1E0L as well as in
the use of the extended HF virtual space, which is not well localizable.

The results discussed so far seem to indicate that our approximation (3) is the best one,
yielding the largest percentage ofECMP2 in LMP2 calculations. However, the computations
discussed so far were only single-point ones at the equilibrium geometry reported previously
[39]. It is of much more importance to establish to what extent a given approximation to
the CMP2 value is capable of reproducing the correct form of a potential curve or surface
at geometries other than the equilibrium one [60–62], while a large amount of correlation
energy obtained in a single-point calculation at the minimum adds just a constant to the
potential obtained. Thus we want to discuss now the results of calculations of some points
of a potential curve according to the bond alternation of t-PA, using Clementi’s double-zeta
basis set and performing calculations with 11k-points in the fourth-neighbour-interaction
approximation. All geometrical parameters, besides the C–C bond lengths, were kept fixed
(1.085Å for the C–H bonds and all angles are equal to 120◦). For this purpose we have
adjusted parabolae to the three values around the minima of the corresponding curves (for
1RCC we have used the values 0.075Å, 0.085Å and 0.095Å):

V (1RCC) = a

2
(1RCC)

2+ b1RCC+ V (0) 1RCC = RC−C− RC=C (23)

for our different approximations. The results obtained are given in table 3.
In table 3 we have listed the force constantsa, the linear termb and the1RCC value

x0 at equilibrium. Furthermore, we give the valueu0 of the bond alternation, projected
onto the chain axis, together with the energy at equilibrium. The so-called dimerization
energy, the energy difference between the equidistant chain and the alternating one, we
cannot compute, since our LO approximation (due to the Fourier transformations, although
formally no half-filled band appears because of the doubling of the unit cell) does not
work for equidistant, metallic chains. Table 3 indicates first of all that our CMP2 results
agree with the ones obtained by Suhai [39], although he used a different basis set and we
did not optimize the other geometrical parameters (RC−H and the bond angles) for each
value of1RCC, as Suhai did. From table 3 it is clear that our approximation (0) is not
able to reproduce the correct potential, since in the range of1RCC which we considered
here we do not find a minimum. The adjusted parabolae simulate a maximum and show a
negative force constant. As expected, at the extremum we recover just 59.4% of the CMP2
energy. Approximation (1), which already contains three-cell interactions, turns out already
to perform much better. It finds a minimum quite close to the one calculated using the
CMP2 method; however, the force constant and the linear term in the parabola are each
roughly half of the corresponding value obtained using the CMP2 method. The LMP2
energy in the equilibrium structure here recovers 72.8% ofECMP2. The best performance
is shown by approximation (2), where the LMP2 curve reproduces the force constant and
the linear term obtained by the CMP2 method almost completely. The same holds for the
equilibrium geometry. On the other hand the energy at equilibrium,ELMP2, corresponds
only to 77.9% ofECMP2. Interestingly, the corresponding CCD values for the geometry in
our LO approximation (2) are virtually identical to those computed by Suhai [39] using the
MP4(SDTQ) method, although we neglect single and triple excitations completely.
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Table 3. The parametersa (in N cm−1, as usually used in spectroscopy for force constants;

1 mdyn Å
−1 = 1 N cm−1) and b (in nanonewtons, nN) of the parabolae characterizing

the potential functionsV (1RCC), calculated by different methods in our localized orbital
approximation and by the CMP2 method, using Clementi’s double-zeta basis set, the fourth-
neighbour-interaction approximation, and 11k-points. Since our previous experience showed
[42] that in particular 04 CC interactions can be obtained using scale factors from LMP2 values,
we have applied this procedure for the 04 contributions here also. In addition the valuesx0

(in pm) of 1RCC at the potential minima, and the energies at the minimaEG (in eV) relative
to a value of−2091 eV are given.u0 (in pm) denotes the bond alternation projected onto the
polymer axis (experimental value: 2.6 pm; see [39] for references).

Method a (N cm−1) b (nN) x0 (pm) u0 (pm) EG (eV)

CMP2a 286.8 −238.2 8.31 2.35 −6.939

Approximation (0)

LMP2 −8.0 11.2 14.00 3.96 −4.124
LCCD −59.3 52.2 8.81 2.49 −4.775
CCD −84.9 74.3 8.76 2.48 −4.666

Approximation (1)

LMP2 136.2 −112.3 8.25 2.33 −5.051
LCCD 115.4 −97.2 8.43 2.38 −5.764
CCD 107.3 −90.7 8.45 2.39 −5.614

Approximation (2)

LMP2 289.9 −240.8 8.30 2.35 −5.403
LCCD 222.7 −185.0 8.31 2.35 −6.487
CCD 241.9 −203.5 8.41 2.38 −6.334

Approximation (3)

LMP2 177.8 −146.1 8.22 2.32 −6.057
LCCD 139.4 −114.9 8.24 2.33 −7.262
CCD 113.7 −93.1 8.18 2.31 −7.081

a Suhai [39] reportedx0 = 8.34 pm, u0 = 2.36 pm, calculated using Dunning’s double-zeta
basis and the CMP2 method, while he foundx0 = 8.43 pm, u0 = 2.38 pm with the CMP4
method.

Suhai [39] also reports results of density functional (DF) calculations made using
several different functionals, with which our CCD and Suhai’s MP4(SDTQ) results can
be compared. The values ofu0 that he quotes differ quite a lot from each other and are
too small in comparison with most of the commonly used functionals. Suhai [39] (the
following results foru0 are all taken from [39]), applying a double-zeta basis set, has used
three different methods containing only an exchange part in the functional. For this case
he applied the Hartree–Fock–Slater method [63] which yieldsu0 = 0.51 pm, and also a
gradient-corrected exchange functional, the Hartree–Fock–Becke method [64], which yields
u0 = 1.35 pm, again far too small compared to the experimental or theab initio values.
Surprisingly, a method which contains also only an exchange functional, namely a mixture
between the exact HF exchange and the Slater functional (called the BHH method) [65],
yields the value ofu0 (2.32 pm) which is closest to the MP4(SDTQ) one and to ours among
all of the DF results given in [39]. The inclusion of correlation functionals in addition to the
exchange ones still led to the result of the values foru0 being too small. With the correlation
functional of the local spin-density theory, parametrized as described by Vosko, Wilk and
Nusair [66], in combination with the Slater exchange, Suhai obtainedu0 = 0.45 pm, while
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the value was increased slightly tou0 = 0.63 pm when it was calculated with the Becke
exchange. The gradient-corrected correlation functional of Lee, Yang and Parr (LYP) [67]
led to the resultu0 = 0.15 pm in combination with the Slater exchange and 0.34 pm together
with the Becke exchange functional. With the correlation functional of Perdew and Wang
[68] and the Becke exchange, one obtains 0.53 pm. The result (2.10 pm) computed with a
combination of the BHH exchange and the LYP correlation functional is closer to the CMP4
value, while the HF method used directly together with the LYP correlation functional (2.85
pm) even overshoots the experimental value by 0.25 pm.

Our approximation (3), although it recovers 87.3% ofECMP2 at equilibrium, performs
much less well away from equilibrium, as the incorrect values for the force constant and the
linear term show. Therefore we advocate for future applications the use of LO approximation
(2) to compute potentials of the correct form, which are just shifted parallel to the canonical
ones by a finite amount, while LO approximation (3) can be used at equilibrium to obtain an
estimate of this shift, which would be in error by about±10% of the corresponding canonical
value, as our results suggest. Finally, our results for the projected bond alternationu0 of
2.35 pm (MP2, LCCD) and 2.38 pm (CCD) are in fair agreement with the experimental
value of roughly 2.6 pm (see [39] for references) and in agreement with CMP2 calculations.
Since the bond alternation in t-PA is a very subtle effect, depending heavily on the quality
of the correlation calculations, we feel that our results are a strong indication for the quality
of our LO approximation (2), although the recoverable amount of the total correlation
energy computed with canonical orbitals is only roughly 80%. One might feel that the
differences in the quality of our approximations might be a contradictory result; however, it
is a well known fact that there exist approximations which work very well at equilibrium,
but perform much less well in non-equilibrium cases. Obviously such a situation is realized
here with our approximation (3), which works well for the total energy of the equilibrium
structure but cannot describe non-equilibrium situations well, while the opposite is true for
approximation (2). However, approximation (2) still recovers 78% of the CMP2 correlation
energy at equilibrium and approximation (3) 87%. Thus the performance of approximation
(2) is also not too bad.

4. Conclusion

We have presented several possibilities for the calculation of correlation energies for
polymers, taking advantage of a localized orbital description. Our results indicate that the
inclusion of simultaneous three-cell interactions into the treatment is of utmost importance.
The calculations, especially for approximations involving interactions of larger numbers
of neighbours, are feasible in our approximation even for CCD theory, and forN = 4
the complete LMP2 calculation is already faster than the CMP2 one. This advantage is
even greater ifN increases, because in the CMP2 calculation the transformations of the
two-electron integrals from the atomic orbital to the Wannier function basis have to be
complete, while in the case of the LMP2 calculation one needs only partial transformations
of the order ofN = 3 calculations, the number of which increases just linearly withN ,
while it increases roughly with the fifth power ofN in the case of the CMP2 calculation.
In table 4 we give some computational times for our different calculations on a CRAY
Y-MP8/8-128 Serial 1004/445 computer.

Table 4 shows that our LO approximation is less efficient than the CMP2 method for
second- and third-neighbour-interaction calculations, while forN = 4 it already needs only
81% of the time necessary for the CMP2 method. An estimate forN = 6 and 8 shows
that in the case whereN = 6 an LMP2 calculation would need only about 29% of the time
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Table 4. The computational times necessary for our calculations for interactions of different
numbersN of neighbours included, as described in the text.TN denotes the time necessary
for the four-index transformation in an actual CMP2 calculation, where the time forN = 2,
1450 CPU seconds, is defined as the time unit.(N/2)4.5 is an estimate forTN . TCMP2 is the
total computational time, including the calculation of the total energy per unit cell, necessary for
the CMP2 calculation (using the program of [54]).TLMP2 denotes the total computational time
necessary for a complete LMP2 calculation, including several partial integral transformations:
one for the unit cell,N for cell dimers,N/2 (if N is even) or(N − 1)/2 (if N is odd) for cell
trimers, and the corresponding LMP2 iterations. The computational times forN = 6 and 8 are
estimated on the basis of(N/2)4.5 for TCMP2, and with the help of the known computational
times for the cell dimers and trimers in the case ofTLMP2.

N TN (N/2)4.5 TCMP2 TLMP2

2 1.00 1.00 1.04 10.32
3 6.40 6.20 6.55 11.39
4 24.10 22.63 24.36 19.48

6 — 140 140 29
8 — 512 512 39

necessary for a CMP2 one while the corresponding fraction forN = 8 is only 8%. Note
that the computational time necessary for our LMP2 method increases additively by roughly
10 time units (see table 4 for the definition of the time unit) ifN increases by 2, while
TCMP2 increases as described by a power law, roughly(N/2)4.5 (which even underestimates
TCMP2), with increasingN . However, after enforcing symmetry restrictions (see below)
these relations will improve considerably. The main reason for the bad performance of our
method forN = 2 and 3 is that we have to perform in these cases a trimer calculation
involving an iterative procedure which scales roughly asN5.

Furthermore, our approximation is able to reproduce accurately the potential for the bond
alternation in t-PA, although it recovers only about 80% of the canonical total correlation
energy per cell. The force constants listed in table 3 should not be compared to experiment,
since first of all there is no normal mode in the system which would agree directly with our
alternation coordinate; and secondly, the adjustment of a parabola to three calculated points
is only performed to enable one to compare the forms of the curves obtained with different
approximations against each other, while an exact determination of force constants would
require more points and also anharmonic terms in the potentialansatz.

The method will be further improved by enforcing polymer symmetry on the cluster
calculated, i.e. using the fact that

〈wqi (1)wq
′

j (2)|1/r12|wq ′′r (1)wq
′′′
s (2)〉 = 〈w0

i (1)w
q ′−q
j (2)|1/r12|wq ′′−qr (1)wq

′′′−q
s (2)〉 (24)

and also

〈wqi (1)wq
′

j (2)|T̂2|wq ′′r (1)wq
′′′
s (2)〉 = 〈w0

i (1)w
q ′−q
j (2)|T̂2|wq ′′−qr (1)wq

′′′−q
s (2)〉 (25)

which are valid for an infinite polymer hold also during the iterations on our finite
subsystems. Furthermore, one could replace the problematic HF virtual space by specially
constructed localized virtuals, e.g. following the ideas of Pulay and Saebø [12] one could
use virtual orbitals constructed from atomic orbitals located within the subsystem under
consideration and orthogonalize them to the occupied space.

In a final paper of this series we shall concentrate on the computation of correlation-
corrected band structures with the help of localized orbitals and the quasi-particle method
introduced by Suhai and Ladik [29] intoab initio polymer theory.
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Appendix. Transformation of the Fock matrix elements to the Wannier function basis

As is well known [29, 30, 32] the basis-set expansion of a Wannier functionw
q

j for band
j and centred at cellq is given by

w
q

j =
∞∑

p=−∞

∑
r

d
p

rjχ
p+q
r =

∞∑
p=−∞

∑
r

d
p−q
rj χpr (A1)

wherep is a cell index andr the index of an atomic basis function within a cell. The basis
function r in cell p is denoted byχpr . The expansion coefficients of the Wannier functions
are

d
p

rj =
1

G

(BZ)∑
k

eikpcrj (k) = 1

2π

∫ π

−π
eikpcrj (k) dk

G = 2M + 1 k = lim
M→∞

2π

2M + 1
p p ∈ [−M,M] k ∈ [−π, π ].

(A2)

Herep is an integer, andcrj (k) is the expansion coefficient of the crystal orbitalj at wave
numberk for the symmetry-adapted basis functionr. Then the elements of the transformed
Fock matrix in the space of Wannier functions can be written as

F
q ′,q ′+q
ij = F 0q

ij = 〈w0
i |F̂ |wqj 〉 =

∑
rs

∞∑
pp′=−∞

d
p′∗
ri d

p−q
sj 〈χp

′
r |F̂ |χps 〉. (A3)

Note that a Wannier function has an infinite extension over all cells also in a truncated
calculation in theN th-neighbour approximation, and that according to equation (A2) in
principle all of these coefficients can be calculated. Only Wannier functions with an
infinite extension are strictly orthonormal, although usually the necessary lattice sums can
be truncated at a finite number of cells due to the localization of the Wfs. In a calculation
with a strictN th-neighbour cut-off we have

Frs(q) =
{
〈χ0
r |F̂ |χqs 〉 |q| 6 N

0 |q| > N .
(A4)

Thus we can write the elements ofF in a Wannier function basis as

F
0q
ij =

∑
rs

∞∑
pp′=−∞

d
p′∗
ri d

p−q
sj F p

′,p
rs =

∑
rs

∞∑
pp′=−∞

d
p′∗
ri d

p−q
sj Frs(p − p′). (A5)

Now, instead of summing over cellsp′, we can sum alternatively overP = p − p′. Since
both summations run over all cells, we can use the same limits for the summation overP :

F
0q
ij =

∑
rs

∞∑
pP=−∞

d
p−P∗
ri d

p−q
sj Frs(P ). (A6)

Now with (A2) for theds we obtain

F
0q
ij =

∑
rs

∞∑
pP=−∞

1

G2

(BZ)∑
kk′

e−ik(p−P)c∗ri(k)e
ik′(p−q)csj (k′)Frs(P )
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=
∑
rs

∞∑
P=−∞

1

G

(BZ)∑
kk′

eikP c∗ri(k)e
−ik′qcsj (k

′)Frs(P )

[
1

G

∞∑
p=−∞

ei(k′−k)p
]
. (A7)

AssumingM to be finite for the moment and thusk to be discrete, we would have

M∑
p=−M

ei(k′−k)p =
M∑

p=−M
e[2π i/(2M+1)](`′−`)p = (2M + 1)δ``′ ` integer. (A8)

However, sinceM is infinite in our case, the summations overk become integrals:

(BZ)∑
k

fk → G

2π

∫ π

−π
f (k) dk for M →∞. (A9)

Thus our expression for the elements ofF becomes

F
0q
ij =

∑
rs

∞∑
P=−∞

1

4π2

∫ π

−π

∫ π

−π
dk dk′ eikPe−ik′qc∗ri(k)csj (k

′)Frs(P )

[ ∞∑
p=−∞

ei(k′−k)p
]
.

(A10)

For continuousk (infinite M) the summation overp can be also performed and yields
∞∑

p=−∞
ei(k′−k)p = 2πδ(k − k′). (A11)

Thus we obtain

F
0q
ij =

1

2π

∑
rs

∞∑
P=−∞

∫ π

−π
dk
∫ π

−π
dk′ δ(k − k′)eikPe−ik′qc∗ri(k)csj (k

′)Frs(P ) (A12)

and by integration overk′:

F
0q
ij =

1

2π

∑
rs

∫ π

−π
dk e−ikqc∗ri(k)csj (k)

[ ∞∑
P=−∞

eikP Frs(P )

]
. (A13)

Since we adopt a strictN th-neighbour approximation (A4), the summation overP becomes
finite and we obtain exactly that form of the Fock matrix,F(k), which has our CO
coefficientscj (k) as eigenvectors:

∞∑
P=−∞

eikPF(P ) =
N∑

P=−N
eikPF(P ) = F(k). (A14)

Then our Fock matrix in the Wannier function basis becomes in theN th-neighbour
approximation

F
0q
ij =

1

2π

∫ π

−π
dk e−ikq

∑
rs

c∗ri(k)Frs(k)csj (k). (A15)

For this Fock matrixF(k) we solved the eigenvalue problem

F(k)cj (k) = εj (k)S(k)cj (k). (A16)

Since this holds only ifF(k) is constructed in theN th-neighbour approximation, we have
for the Fock matrix in this approximation and without any further neglect the expression
(εj (k) = εj (−k)):

F
0q
ij =

δij

2π

∫ π

−π
e−ikqεj (k) dk = δij

π

∫ π

0
cos(kq)εj (k) dk. (A17)
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Thus we have shown that the exact transformation of the Fock matrix from the atomic
orbitals to the Wannier function basis is given by

F
0q
ij =

∑
rs

∞∑
p=−∞

N∑
P=−N

d
p−P∗
ri d

p−q
sj Frs(P ) = δij

π

∫ π

0
cos(kq)εj (k) dk (A18)

which proves that the Fock matrix in the Wannier function basis is diagonal in the band
indices, no matter what cut-off had been applied in the HF calculation, because for any
cut-off, the coefficients of the Wannier functions are defined by equation (A2) for all (in
principle infinite) cells. In particular theF-matrix elements between occupied and virtual
orbitals arestrictly vanishing in the Wannier—as well as in the CO—-basis, making the
inclusion of single excitations unnecessary.
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